Read PDF JQuery: Just the Basics - A Primer for the JavaScript Programmer

Free download. Book file PDF easily for everyone and every device. You can download and read online jQuery: Just the Basics - A Primer for the JavaScript Programmer file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with jQuery: Just the Basics - A Primer for the JavaScript Programmer book. Happy reading jQuery: Just the Basics - A Primer for the JavaScript Programmer Bookeveryone. Download file Free Book PDF jQuery: Just the Basics - A Primer for the JavaScript Programmer at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF jQuery: Just the Basics - A Primer for the JavaScript Programmer Pocket Guide.
What is a promise?
  1. Loading Third-Party JavaScript
  2. 1. jQuery Basics - jQuery Cookbook [Book]
  3. Introduction
  4. Learning JavaScript Design Patterns

The JQuery docs is a must. Read it end to end, then start to start and keep it on a bookmark. Anything you can think of asking about jQuery is answered there even most of the questions asked on SO. A list apart is also a very good resource for web design. I highly recommend their CSS Floats article. There's a free ebook called Eloquent JavaScript. I find it very good at explaining Javascript jQuery is just a Javascript library, there is nothing alien in it.

And some people might not agree with me, but W3Schools is a very good resource for beginners it usually ranks high in search results. You need Firebug for Firefox. The Chrome Developer Tools are already installed in Chrome and are super useful! It's one thing to use JQuery, but you should really understand how JQuery works. This is a very good guide by one of the leading JS guys out there - you will learn more about JS here than anywhere.

HTML, seems simple and is easy to ignore as a technology, but you should not turn your nose up to it. For jQuery i would definitely consider learning as much as you can about JavaScript proper. Whilst you can write jQuery without knowing all that much about JavaScript, you need to understand JavaScript to make the most of jQuery and write better code. Non-Specific but Relatable Business Advice. The Man who Thought his Head was a Div. Access Google Drive via the Command Line.

This is a crash course meant to get a working Magento developer familiar with basic KnockoutJS concepts, with a focus on the features Magento uses. We highly recommend working through the official KnockoutJS tutorials if you plan on building anything of substance with KnockoutJS. The quickest way to wrap your head around KnockoutJS is a basic example. First, lets create the following HTML page. If you load this page in a browser, it will be completely blank.

Finally, change the h1 and p tags so they include the following data-bind attributes. This stands for Model, View, View Model. Really though, KnockoutJS is better billed as a VVM system, since its agnostic about what sort of model code you use to fetch data. The view is your HTML page. The view model is the javascript object that contains data.

Again, the view is the entire HTML page.

Loading Third-Party JavaScript

When it finds these attributes, it parses the attribute for the binding name and value, and then invokes a set of rules based on the name of the binding. For example — the binding we invoke above is the text binding. The value we passed to the text binding is title. The end result is something that, if written in pure javascript, might look like this. Instead, developers can write HTML, mark it up with data-bind attributes, and just assign values to an object.

Consider this more sophisticated view model. While this example is simple, you can start to see how this basic building block could implement far more complicated view logic. It could run its logic and process to facilitate and coordinate many objects that are related to each other, but unrelated to the original event source. An event aggregator and a mediator have been combined to create a much more meaningful experience in both the code and the application itself.

We now have a clean separation between the menu and the workflow through an event aggregator and we are still keeping the workflow itself clean and maintainable through the use of a mediator. Adding new publishers and subscribers is relatively easy due to the level of decoupling present. Perhaps the biggest downside of using the pattern is that it can introduce a single point of failure.

Placing a Mediator between modules can also cause a performance hit as they are always communicating indirectly. Because of the nature of loose coupling, it's difficult to establish how a system might react by only looking at the broadcasts. That said, it's useful to remind ourselves that decoupled systems have a number of other benefits - if our modules communicated with each other directly, changes to modules e.

This problem is less of a concern with decoupled systems. At the end of the day, tight coupling causes all kinds of headaches and this is just another alternative solution, but one which can work very well if implemented correctly. We will be covering the Facade pattern shortly, but for reference purposes some developers may also wonder whether there are similarities between the Mediator and Facade patterns. They do both abstract the functionality of existing modules, but there are some subtle differences. The Mediator centralizes communication between modules where it's explicitly referenced by these modules.

In a sense this is multidirectional. The Facade however just defines a simpler interface to a module or system but doesn't add any additional functionality. Other modules in the system aren't directly aware of the concept of a facade and could be considered unidirectional. The GoF refer to the prototype pattern as one which creates objects based on a template of an existing object through cloning. We can think of the prototype pattern as being based on prototypal inheritance where we create objects which act as prototypes for other objects.

The prototype object itself is effectively used as a blueprint for each object the constructor creates. If the prototype of the constructor function used contains a property called name for example as per the code sample lower down , then each object created by that same constructor will also have this same property. Reviewing the definitions for this pattern in existing non-JavaScript literature, we may find references to classes once again. The reality is that prototypal inheritance avoids using classes altogether.

There isn't a "definition" object nor a core object in theory. We're simply creating copies of existing functional objects. One of the benefits of using the prototype pattern is that we're working with the prototypal strengths JavaScript has to offer natively rather than attempting to imitate features of other languages. With other design patterns, this isn't always the case. Not only is the pattern an easy way to implement inheritance, but it can also come with a performance boost as well: when defining a function in an object, they're all created by reference so all child objects point to the same function instead of creating their own individual copies.

For those interested, real prototypal inheritance, as defined in the ECMAScript 5 standard, requires the use of Object. To remind ourselves, Object. We saw earlier that Object. For example:. Here the properties can be initialized on the second argument of Object. It is worth noting that prototypal relationships can cause trouble when enumerating properties of objects and as Crockford recommends wrapping the contents of the loop in a hasOwnProperty check.

If we wish to implement the prototype pattern without directly using Object. Note: This alternative does not allow the user to define read-only properties in the same manner as the vehiclePrototype may be altered if not careful. One could reference this method from the vehicle function. Note, however that vehicle here is emulating a constructor, since the prototype pattern does not include any notion of initialization beyond linking an object to a prototype.

The Command pattern aims to encapsulate method invocation, requests or operations into a single object and gives us the ability to both parameterize and pass method calls around that can be executed at our discretion. In addition, it enables us to decouple objects invoking the action from the objects which implement them, giving us a greater degree of overall flexibility in swapping out concrete classes objects. Concrete classes are best explained in terms of class-based programming languages and are related to the idea of abstract classes.

An abstract class defines an interface, but doesn't necessarily provide implementations for all of its member functions. It acts as a base class from which others are derived. A derived class which implements the missing functionality is called a concrete class. The general idea behind the Command pattern is that it provides us a means to separate the responsibilities of issuing commands from anything executing commands, delegating this responsibility to different objects instead. Implementation wise, simple command objects bind together both an action and the object wishing to invoke the action.

They consistently include an execution operation such as run or execute. All Command objects with the same interface can easily be swapped as needed and this is considered one of the larger benefits of the pattern. Taking a look at the above code, it would be trivial to invoke our carManager methods by directly accessing the object.

We would all be forgiven for thinking there is nothing wrong with this - technically, it's completely valid JavaScript. There are however scenarios where this may be disadvantageous. For example, imagine if the core API behind the carManager changed. This would require all objects directly accessing these methods within our application to also be modified. This could be viewed as a layer of coupling which effectively goes against the OOP methodology of loosely coupling objects as much as possible.

Instead, we could solve this problem by abstracting the API away further.

1. jQuery Basics - jQuery Cookbook [Book]

Let's now expand on our carManager so that our application of the Command pattern results in the following: accept any named methods that can be performed on the carManager object, passing along any data that might be used such as the Car model and ID. As per this structure we should now add a definition for the carManager. When we put up a facade, we present an outward appearance to the world which may conceal a very different reality. This was the inspiration for the name behind the next pattern we're going to review - the Facade pattern. This pattern provides a convenient higher-level interface to a larger body of code, hiding its true underlying complexity.

Think of it as simplifying the API being presented to other developers, something which almost always improves usability. Facades are a structural pattern which can often be seen in JavaScript libraries like jQuery where, although an implementation may support methods with a wide range of behaviors, only a "facade" or limited abstraction of these methods is presented to the public for use.

This allows us to interact with the Facade directly rather than the subsystem behind the scenes. The jQuery core methods should be considered intermediate abstractions. To build on what we've learned, the Facade pattern both simplifies the interface of a class and it also decouples the class from the code that utilizes it. This gives us the ability to indirectly interact with subsystems in a way that can sometimes be less prone to error than accessing the subsystem directly.

A Facade's advantages include ease of use and often a small size-footprint in implementing the pattern. This is an unoptimized code example, but here we're utilizing a Facade to simplify an interface for listening to events cross-browser. Internally, this is actually being powered by a method called bindReady , which is doing this:. Facades don't just have to be used on their own, however. They can also be integrated with other patterns such as the Module pattern. As we can see below, our instance of the module patterns contains a number of methods which have been privately defined.

A Facade is then used to supply a much simpler API to accessing these methods:. In this example, calling module. Facades generally have few disadvantages, but one concern worth noting is performance. Namely, one must determine whether there is an implicit cost to the abstraction a Facade offers to our implementation and if so, whether this cost is justifiable. Did you know however that getElementById on its own is significantly faster by a high order of magnitude?

Now of course, we have to keep in mind that jQuery and Sizzle - its selector engine are doing a lot more behind the scenes to optimize our query and that a jQuery object, not just a DOM node is returned. The challenge with this particular Facade is that in order to provide an elegant selector function capable of accepting and parsing multiple types of queries, there is an implicit cost of abstraction. The user isn't required to access jQuery.

  • Stay ahead with the world's most comprehensive technology and business learning platform..
  • JavaScript Primer | SpringerLink;
  • THE NEW PAN AFRICANISM 2020: United Continental Republic of Africa (UCRA)!
  • Top 10 ES6 Features Every Busy JavaScript Developer Must Know.
  • Regan [The Sisters ORyan 1] (Siren Publishing Menage Everlasting).
  • Subscribe to Our Blog!

That said, the trade-off in performance has been tested in practice over the years and given the success of jQuery, a simple Facade actually worked out very well for the team. When using the pattern, try to be aware of any performance costs involved and make a call on whether they are worth the level of abstraction offered. The Factory pattern is another creational pattern concerned with the notion of creating objects. Where it differs from the other patterns in its category is that it doesn't explicitly require us to use a constructor.

Instead, a Factory can provide a generic interface for creating objects, where we can specify the type of factory object we wish to be created. Imagine that we have a UI factory where we are asked to create a type of UI component. Rather than creating this component directly using the new operator or via another creational constructor, we ask a Factory object for a new component instead. We inform the Factory what type of object is required e. This is particularly useful if the object creation process is relatively complex, e.

Examples of this pattern can be found in UI libraries such as ExtJS where the methods for creating objects or components may be further subclassed. The following is an example that builds upon our previous snippets using the Constructor pattern logic to define cars. It demonstrates how a Vehicle Factory may be implemented using the Factory pattern:.

Approach 2: Subclass VehicleFactory to create a factory class that builds Trucks. The Factory pattern can be especially useful when applied to the following situations: When our object or component setup involves a high level of complexity When we need to easily generate different instances of objects depending on the environment we are in When we're working with many small objects or components that share the same properties When composing objects with instances of other objects that need only satisfy an API contract aka, duck typing to work.

This is useful for decoupling. When applied to the wrong type of problem, this pattern can introduce an unnecessarily great deal of complexity to an application. Unless providing an interface for object creation is a design goal for the library or framework we are writing, I would suggest sticking to explicit constructors to avoid the unnecessary overhead. Due to the fact that the process of object creation is effectively abstracted behind an interface, this can also introduce problems with unit testing depending on just how complex this process might be.

It is also useful to be aware of the Abstract Factory pattern, which aims to encapsulate a group of individual factories with a common goal. It separates the details of implementation of a set of objects from their general usage. An Abstract Factory should be used where a system must be independent from the way the objects it creates are generated or it needs to work with multiple types of objects.

An example which is both simple and easier to understand is a vehicle factory, which defines ways to get or register vehicles types. The abstract factory can be named abstractVehicleFactory. The Abstract factory will allow the definition of types of vehicle like "car" or "truck" and concrete factories will implement only classes that fulfill the vehicle contract e. For developers unfamiliar with sub-classing, we will go through a brief beginners primer on them before diving into Mixins and Decorators further. Sub-classing is a term that refers to inheriting properties for a new object from a base or superclass object.

In traditional object-oriented programming, a class B is able to extend another class A. Here we consider A a superclass and B a subclass of A. As such, all instances of B inherit the methods from A. B is however still able to define its own methods, including those that override methods originally defined by A. Should B need to invoke a method in A that has been overridden, we refer to this as method chaining. Should B need to invoke the constructor A the superclass , we call this constructor chaining. In order to demonstrate sub-classing, we first need a base object that can have new instances of itself created.

Next, we'll want to specify a new class object that's a subclass of the existing Person object. Let us imagine we want to add distinct properties to distinguish a Person from a Superhero whilst inheriting the properties of the Person "superclass". As superheroes share many common traits with normal people e.

The Superhero constructor creates an object which descends from Person. Objects of this type have attributes of the objects that are above it in the chain and if we had set default values in the Person object, Superhero is capable of overriding any inherited values with values specific to it's object.

In JavaScript, we can look at inheriting from Mixins as a means of collecting functionality through extension. Each new object we define has a prototype from which it can inherit further properties. Prototypes can inherit from other object prototypes but, even more importantly, can define properties for any number of object instances. We can leverage this fact to promote function re-use.

Mixins allow objects to borrow or inherit functionality from them with a minimal amount of complexity. As the pattern works well with JavaScripts object prototypes, it gives us a fairly flexible way to share functionality from not just one Mixin, but effectively many through multiple inheritance.

They can be viewed as objects with attributes and methods that can be easily shared across a number of other object prototypes. Imagine that we define a Mixin containing utility functions in a standard object literal as follows:. We can then easily extend the prototype of existing constructor functions to include this behavior using a helper such as the Underscore. As we can see, this allows us to easily "mix" in common behaviour into object constructors fairly trivially. In the next example, we have two constructors: a Car and a Mixin.

What we're going to do is augment another way of saying extend the Car so that it can inherit specific methods defined in the Mixin, namely driveForward and driveBackward.

  • Antiques Knock-Off (A Trash n Treasures Mystery)?
  • JavaScript Primer.
  • What do we mean by third-party scripts?.
  • Quicklet on The Best Tupac Songs: Lyrics and Analysis.

This time we won't be using Underscore. Instead, this example will demonstrate how to augment a constructor to include functionality without the need to duplicate this process for every constructor function we may have. Mixins assist in decreasing functional repetition and increasing function re-use in a system. Where an application is likely to require shared behaviour across object instances, we can easily avoid any duplication by maintaining this shared functionality in a Mixin and thus focusing on implementing only the functionality in our system which is truly distinct.

That said, the downsides to Mixins are a little more debatable. Some developers feel that injecting functionality into an object prototype is a bad idea as it leads to both prototype pollution and a level of uncertainty regarding the origin of our functions. In large systems this may well be the case. I would argue that strong documentation can assist in minimizing the amount of confusion regarding the source of mixed in functions, but as with every pattern, if care is taken during implementation we should be okay.

Decorators are a structural design pattern that aim to promote code re-use. Similar to Mixins, they can be considered another viable alternative to object sub-classing. Classically, Decorators offered the ability to add behaviour to existing classes in a system dynamically. The idea was that the decoration itself wasn't essential to the base functionality of the class, otherwise it would be baked into the superclass itself.

They can be used to modify existing systems where we wish to add additional features to objects without the need to heavily modify the underlying code using them. A common reason why developers use them is their applications may contain features requiring a large quantity of distinct types of object.

Imagine having to define hundreds of different object constructors for say, a JavaScript game. The object constructors could represent distinct player types, each with differing capabilities. If we then factored in capabilities, imagine having to create sub-classes for each combination of capability type e. This isn't very practical and certainly isn't manageable when we factor in a growing number of different abilities. The Decorator pattern isn't heavily tied to how objects are created but instead focuses on the problem of extending their functionality.

Rather than just relying on prototypal inheritance, we work with a single base object and progressively add decorator objects which provide the additional capabilities. The idea is that rather than sub-classing, we add decorate properties or methods to a base object so it's a little more streamlined. Adding new attributes to objects in JavaScript is a very straight-forward process so with this in mind, a very simplistic decorator may be implemented as follows:. This type of simplistic implementation is functional, but it doesn't really demonstrate all of the strengths Decorators have to offer.

For this, we're first going to go through my variation of the Coffee example from an excellent book called Head First Design Patterns by Freeman, Sierra and Bates, which is modeled around a Macbook purchase. In the above example, our Decorators are overriding the MacBook super-class objects. It's considered a decoration as the original Macbook objects constructor methods which are not overridden e. There isn't really a defined interface in the above example and we're shifting away the responsibility of ensuring an object meets an interface when moving from the creator to the receiver.

Note: This particular variation of the Decorator pattern is provided for reference purposes. If finding it overly complex, I recommend opting for one of the simpler implementations covered earlier. PJDP describes the Decorator as a pattern that is used to transparently wrap objects inside other objects of the same interface. An interface is a way of defining the methods an object should have, however, it doesn't actually directly specify how those methods should be implemented. So, why would we use an interface in JavaScript?

The idea is that they're self-documenting and promote reusability. In theory, interfaces also make code more stable by ensuring changes to them must also be made to the objects implementing them. In the above, Interface. The biggest problem with interfaces is that, as there isn't built-in support for them in JavaScript, there is a danger of us attempting to emulate a feature of another language that may not be an ideal fit. Lightweight interfaces can be used without a great performance cost however and we will next look at Abstract Decorators using this same concept.

To demonstrate the structure of this version of the Decorator pattern, we're going to imagine we have a superclass that models a Macbook once again and a store that allows us to "decorate" our Macbook with a number of enhancements for an additional fee. Now if we were to model this using an individual sub-class for each combination of enhancement options, it might look something like this:.

This would be an impractical solution as a new subclass would be required for every possible combination of enhancements that are available. As we would prefer to keep things simple without maintaining a large set of subclasses, let's look at how decorators may be used to solve this problem better. Rather than requiring all of the combinations we saw earlier, we should simply have to create five new decorator classes.

Methods that are called on these enhancement classes would be passed on to our Macbook class. In our next example, decorators transparently wrap around their components and can interestingly be interchanged as they use the same interface. To make it easier for us to add as many more options as needed later on, an Abstract Decorator class is defined with default methods required to implement the Macbook interface, which the rest of the options will sub-class.

Abstract Decorators ensure that we can decorate a base class independently with as many decorators as needed in different combinations remember the example earlier? What's happening in the above sample is that the Macbook Decorator accepts an object a Macbook to use as our base component. It's using the Macbook interface we defined earlier and for each method is just calling the same method on the component.

We can now create our option classes for what can be added, just by using the Macbook Decorator. What we're doing here is overriding the addCase and getPrice methods that need to be decorated and we're achieving this by first calling these methods on the original macbook and then simply appending a string or numeric value e. As there's been quite a lot of information presented in this section so far, let's try to bring it all together in a single example that will hopefully highlight what we have learned.

As decorators are able to modify objects dynamically, they're a perfect pattern for changing existing systems. Occasionally, it's just simpler to create decorators around an object versus the trouble of maintaining individual sub-classes for each object type. This makes maintaining applications that may require a large number of sub-classed objects significantly more straight-forward. A functional version of this example can be found on JSBin.

As with other patterns we've covered, there are also examples of the Decorator pattern that can be implemented with jQuery. In the following example, we define three objects: defaults, options and settings. The aim of the task is to decorate the defaults object with additional functionality found in options settings. We must:. Developers enjoy using this pattern as it can be used transparently and is also fairly flexible - as we've seen, objects can be wrapped or "decorated" with new behavior and then continue to be used without needing to worry about the base object being modified.

In a broader context, this pattern also avoids us needing to rely on large numbers of subclasses to get the same benefits. There are however drawbacks that we should be aware of when implementing the pattern. If poorly managed, it can significantly complicate our application architecture as it introduces many small, but similar objects into our namespace.

The concern here is that in addition to becoming hard to manage, other developers unfamiliar with the pattern may have a hard time grasping why it's being used. Sufficient commenting or pattern research should assist with the latter, however as long as we keep a handle on how widespread we use the decorator in our applications we should be fine on both counts. The Flyweight pattern is a classical structural solution for optimizing code that is repetitive, slow and inefficiently shares data.

It aims to minimize the use of memory in an application by sharing as much data as possible with related objects e. The pattern was first conceived by Paul Calder and Mark Linton in and was named after the boxing weight class that includes fighters weighing less than lb. The name Flyweight itself is derived from this weight classification as it refers to the small weight memory footprint the pattern aims to help us achieve. In practice, Flyweight data sharing can involve taking several similar objects or data constructs used by a number of objects and placing this data into a single external object.

We can pass through this object to those depending on this data, rather than storing identical data across each one. There are two ways in which the Flyweight pattern can be applied.


The first is at the data-layer, where we deal with the concept of sharing data between large quantities of similar objects stored in memory. The second is at the DOM-layer where the Flyweight can be used as a central event-manager to avoid attaching event handlers to every child element in a parent container we wish to have some similar behavior. As the data-layer is where the flyweight pattern is most used traditionally, we'll take a look at this first. For this application, there are a few more concepts around the classical Flyweight pattern that we need to be aware of.

In the Flyweight pattern there's a concept of two states - intrinsic and extrinsic. Intrinsic information may be required by internal methods in our objects which they absolutely cannot function without. Extrinsic information can however be removed and stored externally. Objects with the same intrinsic data can be replaced with a single shared object, created by a factory method. This allows us to reduce the overall quantity of implicit data being stored quite significantly. The benefit of this is that we're able to keep an eye on objects that have already been instantiated so that new copies are only ever created should the intrinsic state differ from the object we already have.

We use a manager to handle the extrinsic states. How this is implemented can vary, but one approach to this to have the manager object contain a central database of the extrinsic states and the flyweight objects which they belong to. We will be making use of three types of Flyweight components in this implementation, which are listed below:.

Flyweight corresponds to an interface through which flyweights are able to receive and act on extrinsic states Concrete Flyweight actually implements the Flyweight interface and stores intrinsic state. Concrete Flyweights need to be sharable and capable of manipulating state that is extrinsic Flyweight Factory manages flyweight objects and creates them too. It makes sure that our flyweights are shared and manages them as a group of objects which can be queried if we require individual instances.

If an object has been already created in the group it returns it, otherwise it adds a new object to the pool and returns it. Duck punching allows us to extend the capabilities of a language or solution without necessarily needing to modify the runtime source. As this next solution requires the use of a Java keyword implements for implementing interfaces and isn't found in JavaScript natively, let's first duck punch it.

We can use this to patch the lack of an implements keyword by having a function inherit an interface explicitly. Below, CoffeeFlavor implements the CoffeeOrder interface and must contain its interface methods in order for us to assign the functionality powering these implementations to an object. Next, let's continue our look at Flyweights by implementing a system to manage all of the books in a library. The important meta-data for each book could probably be broken down as follows:.

We'll also require the following properties to keep track of which member has checked out a particular book, the date they've checked it out on as well as the expected date of return. Each book would thus be represented as follows, prior to any optimization using the Flyweight pattern:.


Learning JavaScript Design Patterns

This probably works fine initially for small collections of books, however as the library expands to include a larger inventory with multiple versions and copies of each book available, we may find the management system running slower and slower over time. Using thousands of book objects may overwhelm the available memory, but we can optimize our system using the Flyweight pattern to improve this. We can now separate our data into intrinsic and extrinsic states as follows: data relevant to the book object title , author etc is intrinsic whilst the checkout data checkoutMember , dueReturnDate etc is considered extrinsic.

Effectively this means that only one Book object is required for each combination of book properties. The following single instance of our book meta-data combinations will be shared among all of the copies of a book with a particular title. As we can see, the extrinsic states have been removed. Everything to do with library check-outs will be moved to a manager and as the object data is now segmented, a factory can be used for instantiation.

Let's now define a very basic factory. What we're going to have it do is perform a check to see if a book with a particular title has been previously created inside the system; if it has, we'll return it - if not, a new book will be created and stored so that it can be accessed later. This makes sure that we only create a single copy of each unique intrinsic piece of data:.

JavaScript Pro Tips - Code This, NOT That

Next, we need to store the states that were removed from the Book objects somewhere - luckily a manager which we'll be defining as a Singleton can be used to encapsulate them. Combinations of a Book object and the library member that's checked them out will be called Book records. Our manager will be storing both and will also include checkout related logic we stripped out during our flyweight optimization of the Book class.

The result of these changes is that all of the data that's been extracted from the Book class is now being stored in an attribute of the BookManager singleton BookDatabase - something considerably more efficient than the large number of objects we were previously using. Methods related to book checkouts are also now based here as they deal with data that's extrinsic rather than intrinsic. This process does add a little complexity to our final solution, however it's a small concern when compared to the performance issues that have been tackled.

Data wise, if we have 30 copies of the same book, we are now only storing it once. Also, every function takes up memory. With the flyweight pattern these functions exist in one place on the manager and not on every object, thus saving on memory use. For the above-mentioned flyweight unoptimized version we store just link to the function object as we used Book constructor's prototype but if it was implemented in other way, functions would be created for every book instance.

The DOM Document Object Model supports two approaches that allow objects to detect events - either top down event capture or bottom up event bubbling. In event capture, the event is first captured by the outer-most element and propagated to the inner-most element. In event bubbling, the event is captured and given to the inner-most element and then propagated to the outer-elements.

One of the best metaphors for describing Flyweights in this context was written by Gary Chisholm and it goes a little like this:. Try to think of the flyweight in terms of a pond. A fish opens its mouth the event , bubbles rise to the surface the bubbling a fly sitting on the top flies away when the bubble reaches the surface the action.

In this example we can easily transpose the fish opening its mouth to a button being clicked, the bubbles as the bubbling effect and the fly flying away to some function being run. Bubbling was introduced to handle situations where a single event e. Where this happens, event bubbling executes event handlers defined for specific elements at the lowest level possible. From there on, the event bubbles up to containing elements before going to those even higher up.

For our first practical example, imagine we have a number of similar elements in a document with similar behavior executed when a user-action e. Normally what we do when constructing our own accordion component, menu or other list-based widget is bind a click event to each link element in the parent container e. Instead of binding the click to multiple elements, we can easily attach a Flyweight to the top of our container which can listen for events coming from below.

These can then be handled using logic that is as simple or complex as required. As the types of components mentioned often have the same repeating markup for each section e. We'll use this information to construct a very basic accordion using the Flyweight below. A stateManager namespace is used here to encapsulate our flyweight logic whilst jQuery is used to bind the initial click to a container div.

In order to ensure that no other logic on the page is attaching similar handles to the container, an unbind event is first applied. Now to establish exactly what child element in the container is clicked, we make use of a target check which provides a reference to the element that was clicked, regardless of its parent.

Functional JavaScript

We then use this information to handle the click event without actually needing to bind the event to specific children when our page loads. The benefit here is that we're converting many independent actions into a shared ones potentially saving on memory.